- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Nichols, David_A (2)
-
Elhashash, Arwa (1)
-
Grant, Alexander_M (1)
-
Siddhant, S. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Siddhant, S.; Grant, Alexander_M; Nichols, David_A (, Classical and Quantum Gravity)Abstract A new hierarchy of lasting gravitational-wave effects (the higher memory effects) was recently identified in asymptotically flat spacetimes, with the better-known displacement, spin, and center-of-mass memory effects included as the lowest two orders in the set of these effects. These gravitational-wave observables are determined by a set of temporal moments of the news tensor, which describes gravitational radiation from an isolated source. The moments of the news can be expressed in terms of changes in charge-like expressions and integrals over retarded time of flux-like terms, some of which vanish in the absence of radiation. In this paper, we compute expressions for the flux-like contributions to the moments of the news in terms of a set of multipoles that characterize the gravitational-wave strain. We also identify a part of the strain that gives rise to these moments of the news. In the context of post-Newtonian theory, we show that the strain related to the moments of the news is responsible for the many nonlinear, instantaneous terms and ‘memory’ terms that appear in the post-Newtonian expressions for the radiative multipole moments of the strain. We also apply our results to compute the leading post-Newtonian expressions for the moments of the news and the corresponding strains that are generated during the inspiral of compact binary sources. These results provide a new viewpoint on the waveforms computed from the multipolar post-Minkowski formalism, and they could be used to assess the detection prospects of this new class of higher memory effects.more » « less
An official website of the United States government
